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ABSTRACT 24	

Cloud movement and evolution signify the complex water and energy transport in the 25	

atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi-26	

coherent cluster objects enables study of their evolution which can complement climate 27	

model simulations and enhance satellite retrieval algorithms, where there are large gaps 28	

between overpasses. Using an area-overlap cluster tracking algorithm, in this study we 29	

examine the trajectories, horizontal extent, and brightness temperature variations of 30	

millions of individual cloud clusters over their lifespan, from infrared satellite 31	

observations at 30-minute, 4-km resolution, for a period of 11 years. We found that the 32	

majority of cold clouds were both small and short-lived and that their frequency and 33	

location are influenced by El Niño. More importantly, this large sample of individually 34	

tracked clouds shows their horizontal size and temperature evolution. Longer lived 35	

clusters tended to achieve their temperature and size maturity milestones at different 36	

times, while these stages often occurred simultaneously in shorter lived clusters. On 37	

average, clusters with this lag also exhibited a greater rainfall contribution than those 38	

where minimum temperature and maximum size stages occurred simultaneously. 39	

Furthermore, by examining the diurnal cycle of cluster development over Africa and the 40	

Indian subcontinent, we observed differences in the local timing of the maximum 41	

occurrence at different life cycle stages. Over land there was a strong diurnal peak in the 42	

afternoon while over the ocean there was a semi-diurnal peak composed of longer-lived 43	

clusters in the early morning hours and shorter-lived clusters in the afternoon. Building 44	

on regional specific work, this study provides a long-term, high-resolution, and global 45	

survey of object-based cloud characteristics. 46	

47	
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 1. Introduction 48	

Clouds are the most visible vital sign of the atmosphere’s dynamic water and energy 49	

transfer. They are responsible for the latent heat release that drives the atmospheric 50	

circulation. Their transport of water in the form of moisture and precipitation is critical 51	

for the Earth’s hydrological cycle. On sub-synoptic scales, the cloud systems’ movement, 52	

evolution, and spatial and temporal characteristics are remarkably turbulent and complex.  53	

The Lagrangian framework is an effective approach to study cloud clusters. Treating each 54	

cloud as an object across it’s lifespan produces useful information on the evolution of 55	

cloud systems’ properties, which is not available from the Eulerian view [Machado et al., 56	

1998]. Renewed interest in cloud object-based evolution is partly due to the advancement 57	

of satellite-based multi-sensor high-resolution precipitation estimates [Li et al., 2015]. 58	

Currently, these estimates rely heavily on observations from passive microwave (PMW) 59	

sensors aboard polar-orbiting satellites [Kummerow et al., 2000; Joyce et al., 2004; 60	

Huffman et al. 2007; Huffman et al. 2013]. These PMW-based estimates are relatively 61	

accurate, but they do not correlate well with surface observations when precipitation is 62	

very light, very heavy, or over saturated land surfaces, particularly during winter months 63	

[Ebert et al., 2007]. Additionally, these data have large spatial and temporal gaps.  64	

One way to bridge these coverage gaps is to use cloud system advection information 65	

derived from high-resolution infrared observations to continuously “morph” the PMW-66	

based rainfall [Joyce et al., 2004; Kubota et al., 2007; Xie and Xiong, 2011]. These 67	

approaches have been proven effective and are being incorporated into Integrated Multi-68	

satellitE Retrievals for GPM [IMERG; Huffman et al., 2013], the next-generation, Global 69	
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Precipitation Measurement (GPM; Hou et al., 2014) era product suite. However, the 70	

accuracy of the PMW-based estimates is also influenced by the life cycle stage [Tadesse 71	

and Agnastou, 2011]. Developing a more detailed understanding of evolution can provide 72	

additional context. 73	

Another critical application is the evaluation and diagnosis of global models. Currently 74	

atmospheric models still unrealistically reproduce observed precipitation [Ebert et al., 75	

2007; Stephens et al. 2010]. The conventional Eulerian validation gives the spatial and 76	

temporal statistics on each individual grid box, which is the accumulation of many 77	

different cloud systems at various life stages.  A Lagrangian comparison of modeled and 78	

observed cloud evolution statistics could produce additional insight on the modeling of 79	

individual cloud-precipitation processes [Boer and Ramanathan, 1997]. 80	

In the past, studies that combined infrared satellite-based cloud cluster tracking with 81	

Tropical Ocean Global Atmosphere (TOGA) field campaigns to examine cloud evolution, 82	

anatomy, and development conditions [Williams and Houze, 1987; Chen and Houze, 83	

1997]. On larger scales, Mesoscale Convective Systems (MCS) have in particular been 84	

studied due to their ease of detection in radar and satellite images and destructiveness 85	

[Maddox, 1980; Laing and Fritsch, 1997; Blamey and Reason, 2011]. MCS display 86	

regularity in their life cycles, enabling Machado et al. [2004] to develop a statistical life 87	

cycle model to predict MCS propagation with good forecasting skill. 88	

As global, long-term, quality controlled IR data and precipitation data become available 89	

[e.g., Janowiak et al., 2001; Joyce et al., 2004], it becomes feasible to extend IR-based 90	

cloud tracking beyond regional scales and expand the scales of observed phenomena. By 91	
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following a large number of cloud clusters on the global scale for over 11 years, we will 92	

be able to understand more systematically their large-scale dynamical and statistic 93	

characteristics.  94	

In this paper, we present a near-global (60°S-60°N), high-resolution (30-minute, 4-km), 95	

long-term (11-year) study of cloud cluster tracks, life cycle evolution, and diurnal cycle. 96	

The high-resolution data used for the study and the methodology for storm tracking are 97	

described in Section 2 and 3, respectively. Section 4 presents the results, followed by 98	

summary and discussions in Section 5. 99	

2. Data 100	

For our study, we use the NCEP/CPC a 4-km, half hourly infrared (IR) brightness 101	

temperature dataset [Janowiak et al., 2001]. The dataset is merged from all available 102	

geostationary satellites (GMS, Meteosat-5, Meteosat-7, GOES-8 and GOES-10) to form 103	

near-global (60°N-60°S) coverage on a uniform latitude-longitude grid. We used 11 years 104	

of data from 2002 to 2012 for our study.  105	

We have performed additional quality control of the IR data. There are gaps in the IR 106	

data in regions covered by the GMS satellite in the Western Pacific (120°-170°E), so we 107	

filled the missing data by interpolating the preceding and following 30-minute snapshots, 108	

to produce more seamless coverage. Our tests show that this interpolation helps to 109	

prevent early termination of the cloud lifespan due to missing data. 110	

3. Methodology	111	
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The techniques for tracking clouds are mature and largely similar, albeit there are many 112	

implementations. Most of those techniques involve IR geostationary satellite imagery to 113	

follow classes of convective events. The primary dissimilarities in algorithms involve the 114	

detection criteria, such as through the selection of brightness temperature or size 115	

parameter thresholds [Carvalho and Jones, 2001; Morel and Senesi, 2002], usage of more 116	

nuanced detection schemes [Lakshmanan, 2009], or the treatment of splits and merges 117	

[Fiolleau and Roca, 2013].  118	

In spite of a variety of implementations, Machado et al. [1998] found most of the life 119	

cycle statistics are not overly sensitive to the tracking method used. For this paper, we 120	

selected Forecast and Tracking the Evolution of Cloud Clusters [ForTrACC; Vila et al., 121	

2001] which has a single temperature and system size threshold and merges and splits are 122	

treated as special cases for tracking systems (this will be explained in the Section 3.2). 123	

ForTrACC’s simplicity enabled us to capture a broader range of cloud species. 124	

Tracking clouds involves the following two major steps:  125	

3.1. Identification using temperature and morphology 126	

Using brightness temperature thresholds to capture clouds has been used in past studies 127	

and typically empirically derived to satisfy the research goals [e.g. Blamey and Reason, 128	

2001; Velasco and Fritch, 1987; Williams and Houze, 1987]. In general, brightness 129	

temperature detection thresholds vary between 235-255 K and tended to be subjectively 130	

chosen. However, the cluster areal extent was found to the linearly dependent on cluster 131	

threshold and thus not overly sensitive to the exact threshold chosen [Machado et al. 132	

1992; Mapes and Houze, 1993].  133	
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To capture a variety of cloud clusters, we used a single 235 K brightness temperature 134	

threshold, which in the upper atmosphere corresponds to a height of roughly 10 km (9 135	

km) in the tropics (midlatitudes), which is well into the free atmosphere. Additionally, we 136	

applied a minimum size threshold of 100 contiguous pixels (1,600 km2 at the equator) at 137	

all time steps, thus limiting the study to events at the upper bounds of mesoscale or larger. 138	

We excluded smaller scale events because they would be more suitable for regional 139	

studies. Figure 1 shows this selection criteria being applied to a typical IR snapshot. A 140	

temperature range of 235-245 K have been used in the past to detect cloud clusters (e.g. 141	

Williams and Houze, 1987; Mapes	and	Houze,	1993;	Carvalho	and	Jones,	2001; 142	

Machado et al., 2004); the colder threshold is utilized to avoid capturing frozen, high 143	

altitude surfaces. The size threshold reduces the number of tracked clouds by filtering out 144	

small-scale events and reducing the number of splits and merges. With only a 145	

temperature threshold, a single time step can yield over 17,000 cloud clusters. Applying 146	

the size threshold decreased to the number to 800-1000 events. 	147	

3.2. Tracking using area overlap 148	

ForTrACC uses an area overlap technique to track the cloud clusters, both forward and 149	

backward in time. If two cloud clusters identified in different time steps have any shared 150	

pixels, they were considered the same system and assigned a family number. If more than 151	

one match was found, the largest overlaping system was tracked.  152	

Using infrared data, we show in Figure 2 a schematic of the area-overlap handling in 153	

ForTrACC. The area overlap technique produces several cloud cluster merge scenarios: 154	

one-to-one (continuous), one-to-many (split), many-to-one (merge), or no match 155	
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(initialization or dissipation). Most systems undergo merging or splitting in their life 156	

cycle, the prior occurs before maturation, the latter more frequently towards the end of 157	

the life cycle. Only one cluster is followed at each time step to keep features well defined. 158	

When clusters split, the largest cloud continues to be tracked while the smaller split 159	

clusters are treated as a new family and the lifetime clock is reset. All merging clusters 160	

are considered a dissipation and their life cycle ends. ForTrACC’s handling of split and 161	

merge segments is different from earlier work; in other schemes, the segments remain 162	

part of the cloud cluster system rather than considered a new systems [Mapes and Houze, 163	

1993; Chen and Houze, 1996; 1997)]. 164	

A sample output of the resulting cloud cluster tracks are shown in Figure 3. In addition to 165	

showing centroid location, statistics related to the size or areal extent, the mean 166	

brightness temperature, and travel distance of the cluster are also calculated. Colder 167	

temperatures indicate higher cloud tops while areal extent shows the relative scale of the 168	

observed system. All clusters achieve a minimum temperature and maximum size, which 169	

we use as criteria for developmental maturity in Section 4.5. We use this information to 170	

study the ForTrACC-based cloud clusters’ statistical properties, climatology, life cycle, 171	

rainfall contribution, and diurnal cycle. 172	

3.3. Collocation of clusters with passive microwave rainfall estimations 173	

To examine the rainfall contribution of cloud clusters, we matched PMW precipitation 174	

estimates from IMERG [Huffman et al., 2013] with spatially and temporally collocated 175	

cloud clusters.  176	
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While TRMM-based products have a longer data record, GPM has global coverage so we 177	

selected two months of data to examine (June and December 2014). Both datasets were 178	

scaled to a common grid (0.1° x 0.1°) and the available rainfall totals were summed for 179	

clusters at various life cycle stages. 180	

4. Results 181	

4.1. Mean trajectories and statistical properties of cloud clusters  182	

Tracking on the global scale builds on regional studies and enables us to document many 183	

fundamental statistical characteristics of cloud clusters. At any instant, there are on 184	

average 800 clusters larger than 1,600 km2 in the Earth’s atmosphere between 60°S and 185	

60°N. Figure 4 shows the global distribution of clusters with lifetimes between 6 and 9 186	

hours, for both December through February (DJF) and June through August (JJA). The 187	

mean trajectories are calculated by averaging the endpoints of all cluster centroids that 188	

initiate at the same 2° x 2° binned latitude and longitude coordinates. The colors 189	

represent the net zonal direction of the flow. 190	

Regarding the zonal average distance travelled by 6-9 hour lifetime clusters in Figure 4, 191	

we found that cloud clusters travel further in the Northern Hemisphere during DJF; the 192	

average distance traveled peaks at 644.8 km at 36°N, which is likely due to influence of 193	

the climatological jet stream on development and propagation. In the Southern 194	

Hemisphere the maximum occurs near 52°S at a lower 419.8 km. Movement in the 195	

tropics doesn’t vary drastically from each season, but the peak (189.1 km) occurs in JJA 196	

at 12°N. This is in part due to the persistence of the ITCZ and African Easterly Wave 197	

activity. 198	
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Cloud clusters can last from a few hours up to two days, and their sizes range from our 199	

minimal threshold to more than 106 km2 (Figure 5). Most of the clusters are short-lived 200	

and small (Figure 5a), with 90% of the clusters detected having a size less than 49,275 201	

km2 and a lifetime less than 5 hours. The cluster lifetime distribution follows roughly a 202	

log-linear distribution while the cluster size distribution appears to be lognormal at 203	

certain scales, the latter being consistent with some past findings [Machado et al. 1992; 204	

Mapes and Houze, 1993] but different from others [Lovejoy and Schertzer, 2006]. Figure 205	

5b shows the kernel density estimate [Rosenblatt, 1956; Parzen, 1962], a non-parametric 206	

estimate of the probability density of maximum areal extent of each cluster across several 207	

lifetime bins.  208	

Overall, Figure 5 shows that the frequency of cluster lifetime and size are proportional. 209	

This is similar to the results from Chen et al. [1997], who show a linear correlation 210	

between the count of tropical cloud clusters with respect to maximum size and lifetime in 211	

the western Pacific. This reinforces that shorter lived events tend to remain small in scale 212	

while longer-lived ones achieve greater horizontal scales. 213	

These results can be compared with event tracking based on model data [e.g. Bengtsson 214	

et al., 2006; Bengtsson et al., 2009; Hoskins and Hodges, 2001; Neu et al., 2013; Sinclair, 215	

1994]. Modelling studies typically use vorticity or sea level pressure as the defining 216	

feature of midlatitude cyclone storm tracks. Coupled with lower temporal resolution data, 217	

this can result in smoother tracks and are larger and longer-lived than the ones shown in 218	

Figure 4. The differences are due to tracking definitions but may also be due to the 219	

prevalence of lighter rainfall typical in models as compared with observations [Stephens 220	

et al., 2010].  221	
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4.2. Cloud cluster climatology 222	

On the global scale, the clusters exhibit many systematic spatial and temporal 223	

characteristics, as seen in the seasonal climatology map of clusters (Figure 6). The map 224	

produced is the frequency of clusters at their maximum areal extent for each 2° x 2° 225	

latitude-longitude bin. During DJF, the intertropical convergence zone (ITCZ) is closer to 226	

the equator and South Pacific convergence zone is intensified. There is increased activity 227	

from the midlatitude storm tracks across the North American west coast and Europe. In 228	

JJA, tracks capture the northward placement of the ITCZ, Atlantic coastal storms, and the 229	

East Asian monsoon. Less activity is found in proximity of the semi-permanent high 230	

pressure systems (e.g. Pacific and Bermuda highs in JJA). Artifacts in south Pacific (40°-231	

60°S, 120°-160°W) are due to calibration differences between geostationary platforms 232	

and the interface of the half-hourly and hourly sampling regions of the Geostationary 233	

Meteorological Satellite between 120°-170°E. Note that in Figure 6a, we excluded data 234	

from DJF 2006 from 120°-170°E due to intermittent noisy brightness temperature data in 235	

this region. 236	

The frequency also reveals some regional subtleties in Figure 6b. Over the Southeast-237	

Asia islands in the western Pacific Ocean, there are roughly twice as many clusters along 238	

coastlines than the surrounding oceanic areas. This region’s combination of topography, 239	

land-sea thermal contrast, and available moisture generates storms that are both large in 240	

scale and deep, making it it is one of the rainiest places on earth in TRMM-based object 241	

studies [Houze et al., 2015]. 242	
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Interestingly, a high count of clusters does not necessarily correlate with intense rainfall. 243	

Outside the ITCZ, the Amazon, the Asian monsoon, and West African monsoon are 244	

among the most active continental regions in terms of cluster frequency. However, 245	

TRMM-based studies have shown objects tend to be moderate strength and larger scale in 246	

the Amazon while the latter two regions are composed of deep convection [Zipser et al. 247	

2006; Houze et al., 2015]. In the Amazon, rainfall features have a lower mean height than 248	

those over the Asian and African monsoon regions and warm rain tends to be the greatest 249	

contributor of rainfall [Liu and Zipser, 2008]. While not shown, statistically we found 250	

that clusters in our study were typically larger, colder, and longer-lived over Western 251	

Africa and the Indian Subcontinent (JJA), whereas shorter-lived, moderate sized clusters 252	

tended to occur over the Amazon (DJF). 253	

Compared to results based on reanalysis-based tracking results, the JJA cluster counts 254	

shown in Figure 6b resemble vorticity-based African Easterly [Thorncroft and Hodges, 255	

2001]. In both studies, intiation maxima occur along the West Africa coast and Ethiopian 256	

highlands as well as over the Pacific, downstream of Central America. We visually 257	

observed that our IR-based tracks are noisier than reanalysis derived ones and are less 258	

exclusive. Tracking with six-hourly data can skew results towards stronger, longer-lived 259	

events, and can miss younger events. 260	

 4.3. Inter-annual variability 261	

There is significant inter-annual variability in cluster occurrence, particularly between El 262	

Niño and La Niña years. Figure 7 shows the composite of frequency difference of cluster 263	

overpasses at their maximum size during the El Niño phases for 11-years of DJF, binned 264	
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by 2° x 2° latitude-longitude boxes. This was produced by subtracting the annual average 265	

frequency of cluster occurrence during warm phases from the annual average of cool 266	

phases. Only seasons with weak, moderate, or strong phases based on the NINO3.4 sea 267	

surface temperature anomaly index are included. 268	

El Niño has an expected effect on the frequency of cloud clusters in the tropics: more 269	

clusters are observed near the equator during the warm phase in the central pacific 270	

(160°E-160°W)  and in the western pacific (110°-160°E) during the cool phase. However, 271	

teleconnections can also be observed; there is an increase in occurrence over the 272	

Northwest United States  (25-55°N, 100-120°W) and Indian Ocean (10°S-10°N, 40°-273	

80°E) and a decrease in the Atlantic basin (10°S-10°N, 60°-10°W) during El Niño. Teng 274	

et al. [2014] have shown that there are both increases in cloud cluster occurrence as well 275	

as their likelihood of forming tropical cyclones in the western North Pacific during El 276	

Niño. 277	

4.4. Life cycle of cloud clusters 278	

The advantage of continuous Lagrangian tracking is that it allows us to examine 279	

systematically the clusters’ full life cycle and the associated evolution of their 280	

characteristics. Figures 8 and 9 show how the size and brightness temperature of clusters 281	

evolve throughout their lifespan. Each curve represents the average of the aggregated 282	

clusters that lived to the same age. For clarity, clusters that merged into or split off from 283	

existing clusters were not included in Figures 8 and 9. Shorter curves represent brief 284	

events while longer lines represent clusters with longer lifespans. The observed mean life 285	

cycles have a well-defined stages of development – initial detection, intensification, 286	
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maturity, and decay. This can be seen in both their size evolution (Figure 8) and 287	

brightness temperature evolution (Figure 9). With respect to size, clusters initiate, grow, 288	

and achieve their areal maximum closer to the end of their life cycle (Figure 8). At their 289	

size maximum, longer-lived clusters can double or triple their initial areal extent. Shorter-290	

lived ones undergo rapid decay early in their cycle. In contrast, during their brightness 291	

temperature life cycle, clusters cool to a minimum and then begin to warm for the rest of 292	

the life cycle (Figure 9). While an individual clusters’ evolution usually appears erratic 293	

and unpredictable, collectively their mean behavior computed from the ensemble of 10 294	

million clusters shows regularity. 295	

The minimum brightness temperature is reached at an earlier point in the clusters life 296	

cycle than the size maximum. This could be due to overshooting tops, which reach deep 297	

into the troposphere or lower stratosphere first, and then expand to form anvils as they 298	

cool, and thus attaining their minimum brightness temperature before their maximum 299	

areal extent. Additionally, clusters at their maximum areal extent produce cirrus shields 300	

can also conceal the true extent of the clusters underneath.  301	

On the global scale, the life cycle evolution shows substantial differences over 302	

contrasting seasons and land surfaces. Due to their similarity, in Figures 8 and 9 regions 303	

are divided into seasons along the ±25° latitude line, where Northern and Southern 304	

winters (summers) are during DJF and JJA (JJA and DJF), respectively. The tropics use 305	

data from both seasons. Generally, growth is more vigorous in summer than in winter 306	

(e.g., compare Figures 8b and 8f, Figures 9b and 9f), over land than over ocean (e.g., 307	

compare Figures 8a and 8b to Figures 9a and 9b). In addition, the wintertime clusters are 308	

much larger than summertime (e.g., Figures 8a and 8e). In the summer, the midlatitude 309	
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size curves (Figures 8a and 8b) are more similar to the tropics (Figures 8c and 8d). 310	

Regarding brightness temperature, there is a larger spread during the summer (Figures 9a 311	

and 9b) and in tropics (Figures 9c and 9d) than during the winter for both land and ocean 312	

(Figures 9e and 9f). Clusters in the tropics (Figures 9c and 9d) are significantly cooler 313	

than higher latitudes due to deep convection (Figures 9a and 9b). 314	

The peaks in Figures 8 and 9 were fitted to a quadratic linear regression model to show 315	

the general trend of size and temperature maturity across different lifetimes. Shorter-lived 316	

clusters tended to be already at maturity at the time of detection – that is, the shortest 317	

lines in Figures 8 and 9 show that these clusters total area decreased and temperatures 318	

rapidly increased. For longer-lived clusters, the timing of the maximum areal extent and 319	

minimum temperature was asynchronous and larger than that for shorter-lived events. We 320	

will examine some of the implications of this in the following sections. 	321	

4.5 Cloud Clusters and Rainfall	322	

In raining cloud clusters, the differences in the timing of the minimum brightness 323	

temperature and maximum size contribute varying amounts to total precipitation. In 324	

Figure 10, we identified several distinct life cycle stages (initiation, mixed maturity, 325	

minimum brightness temperature, maximum size, and dissipation) and the instantaneous 326	

total volumetric rainfall that is attributed to each rain rate bin. Using the procedure 327	

detailed in Section 3.3, this was determined by collocating the cloud clusters with 328	

available microwave-only rainfall estimations from IMERG [Huffman et al., 2013], for 329	

June and December 2014. 	330	
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Due to the lower temporal resolution of polar orbiting satellites, most clouds could only 331	

be sampled once, so results are examined in a statistical sense rather than as totals by 332	

individual objects. Here we define the minimum temperature (maximum size) as the 333	

lowest average temperature (largest areal extent) achieved by a clusters. We also divide 334	

contribution into two mutually exclusive maturity states, synchronous and asynchronous 335	

occurrence of minimum temperature and maximum areal extent. The prior is denoted as 336	

mixed maturity, while the latter is broken down into the two stages of its variables. 337	

Collectively, the figure shows the rainfall contribution of the beginning, mature, and final 338	

life cycle stage.	339	

Initially, raining clusters are composed of lighter rain and produce less of it. As 340	

development continues, they produce larger volumes of rain as the areal extent of the 341	

cloud increases. It is interesting that in all cases, mixed maturity clusters contribute less 342	

rainfall than those with asynchronous stages. These cases tended to be shorter lived on 343	

average (1.9 hours) than those with larger differences in timing (2.9 hours).  344	

There are seasonal differences in these values. The winter midlatitudes (Figurs 10b and 345	

10e) produced more overall rain than their corresponding summer hemisphere (Figures 346	

10a and 10f) and were more heavily skewed towards lighter rainfall. The tropics had less 347	

seasonal variation in rainfall contribution (Figures 10c and 10d). 348	

Precipitation retrieval algorithms may benefit from incorporating information on the life 349	

cycle stage, season, and hemisphere of the IR cloud cluster. In morphing techniques, the 350	

shape and intensity of rain clusters is held constant between overpasses [Joyce et al., 351	

2004], while in figures 8 and 9 we show that both horizontal size and temperature growth 352	
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rates are not constant during cloud cluster evolution. Biases in hourly rain volume 353	

estimates vary across life cycle stages, lifetimes, and precipitation algorithm [Tadesse 354	

and Anagnostou, 2009].  Knowing the age of the cloud could be useful in devising the 355	

next-generation multi-sensor algorithms.	356	

4.6 Diurnal cycle of cluster evolution 357	

By continuously tracking cloud clusters, we can study when and where they reach their 358	

life cycle milestones. Figure 11 shows the local solar time (LST) of the maximum in the 359	

frequency of cluster initiation. This was calculated from frequency maximum at each 360	

hourly, 2° x 2° bin for clusters with a lifetime greater than two hours. Over land, peak 361	

cloud initiation occurs in the afternoon, especially in the summer hemisphere. Over the 362	

ocean, there is greater prevalence of early morning and afternoon clouds, but the timing 363	

of peak activity depends on region. This double peak was also previously found in the 364	

West Pacific warm pool by Chen and Houze (1997). To examine these differences in 365	

context of development stage, we examine two regions centered over West Africa (0-366	

40°N, 50°W-20°E) and the South Asian peninsula (0°-30°N and 60°-90°E). 367	

In Figure 12, we examine the kernel density of the LST by cluster life cycle stage in these 368	

two regions for both seasons. Over land, there is a strong diurnal cycle and a lag in the 369	

local timing of initiation, minimum temperature, and maximum size. The timing 370	

differences are much smaller over the ocean in both regions and there is a semi-diurnal 371	

cycle over the ocean. The timing of peak initiation over land is earlier in the South Asian 372	

region (1300 LST) than in the Western Africa region (1500 LST). This is possibly due to 373	

the windward side of the Indian subcontinent skewing the the population to lower 374	
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initiation times. Over the ocean, the early morning peaks have similar timing (0200 LST), 375	

but the afternoon peak in Western Africa is earlier (1100 versus 1300 LST). Kikuchi and 376	

Wang [2008] observed this semi-diurnal cycle over the Pacific, Indian, and Atlantic 377	

Oceans in empirical orthogonal modes of TRMM datasets. We can take advantage of the 378	

known lifetime and further inspect the duration of these cloud clusters at different times 379	

of the day. 380	

In Figure 13, we show the kernel density for the LST grouped by the three-hourly binned 381	

lifetime. Over land, the timing differences were delayed by not more than an hour for all 382	

lifetime groups. Shorter-lived clusters (those with lifetimes 6 hours or less) had a sharper 383	

peak than longer-lived events (those with lifetimes greater than 6 hours). There are trivial 384	

differences in the onset of short versus long-lived events in the South Asia region than 385	

over West Africa. 386	

However, over the ocean, longer-lived clusters had a greater tendency to occur in the 387	

early morning hours, peaking between 0300-0400 and 0400-0500 LST in South Asia and 388	

West Africa, respectively. Shorter-lived events peaked both in the early morning and 389	

afternoon, but were the primary type in the afternoon afternoon between 1200-1300 LST 390	

for both regions. In South Asia, the maxima of short-lived clusters precede that of long-391	

lived ones by an hour, partly due to rapid growth and decay of isolated convective cells 392	

which upon visual inspection are more numerous in this region than in West Africa. 393	

These results are interesting in light of previous examination of TRMM precipitation 394	

features, which show that nocturnal storms are more intense over the ocean while over 395	

land the strongest storms are observed during the day [Zipser, 2006]. In summary, the 396	
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oceanic semi-diurnal cycle can be understood to be composed of not just two different 397	

size classes, but as cloud clusters with differing lifetimes as well.	398	

Expanding on the study by Chen and Houze (1997), our results show that their results 399	

extend beyond the West Pacific to other regions and over longer time periods. Chen and 400	

Houze found that large scale, long lived clusters follow a two-day cycle. The formation 401	

of long-lived clusters suppresses subsequent development in that area due to dry 402	

downdrafts from strong storms and the reduction in sea surface temperatures due to cloud 403	

canopy shading. Examining the development-suppression cycle of cloud clusters in other 404	

oceanic regions could be an interesting future direction for this work.	405	

5. Summary and Discussion	406	

In this study, we tracked cloud clusters on the global scale to study the climatology and 407	

life cycles across a broad class of clusters using 11 years of the high-resolution, satellite-408	

based globally merged cloud brightness temperature data. We examined the trajectories, 409	

climatology, life cycles, and diurnal cycle of clusters in context of their life cycle stage 410	

and lifetime.  411	

We found that the vast majority of clusters are short lived and small, demonstrating the 412	

need to work with high-resolution data to fill in coverage gaps. Differences in the shapes 413	

and scales of life cycle curves reflect the variety of clouds captured and show that 414	

evolution is a complex process. Development over the oceans is less intense compared to 415	

land, where strong thermal contrast, orography, and aerosols can influence evolution. We 416	

observe a larger lag in the occurrence of minimum temperature and maximum size for 417	

longer-lived cloud clusters, particularly over land. The diurnal cycle of cloud clusters 418	



Esmaili	et	al.,	2016	 20	

over the South Asia and West Africa revealed a strong diurnal peak over land and a semi-419	

diurnal cycle over the ocean, the latter of which showed greater prevalence of shorter 420	

lived cloud clusters in the afternoon and dominance of longer lived events in the early 421	

morning. 422	

The capability for infrared data to reliably identify and track smaller scale convective 423	

systems is an aspect in which global climate models still have difficulties [Stephens et al. 424	

2010; Westra et al., 2014]. Thus, IR-based cloud tracking can be used to evaluate the 425	

effectiveness of the downscaling abilities of models [Boer and Ramanathan, 1997]. On 426	

the other hand, the infrared data can only depict the two-dimensional, cloud-top 427	

characteristics of the clusters. To address the complex three-dimensional hydro-thermo-428	

dynamics of cloud systems, one has to combine observations from other satellites, such 429	

as CloudSat and CALIPSO, with reanalysis data. 430	

There are several limitations to this study that represent an area of ongoing work, 431	

particularly regarding thresholds. Being too selective on size scales can exclude these 432	

events; being too relaxed produces too many splits, which prematurely terminates the 433	

cluster. Cold surfaces are a particular challenge, such as the Tibetan Plateau which is dry 434	

in the northern winter. However, the relatively high frequency over this region in Figure 435	

6a indicates mountain glacier surfaces are incorrectly being captured in this region. This 436	

poses a challenge to other tracking studies, and mountainous areas are sometimes 437	

removed from analysis [Neu et al., 2013]. As a future improvement, we could develop a 438	

dynamic threshold criteria rather than a fixed brightness temperature value. [Hennon et 439	

al., 2011].  440	
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Another challenge lies in the early termination of cloud clusters due to splits and mergers. 441	

As clouds evolve, they continuously split and merge, each of which resets the lifetime 442	

clock to zero. Only the largest, most well defined clusters avoid this in their lifetimes. 443	

This is a limitation of this specific technique but the tracking algorithm could be refined 444	

in the future to track features that do not have an easily defined shape, such as wintertime 445	

midlatitudes storms or the movement of clouds that are part of atmospheric rivers. 446	

In spite of such limitations, there are many promising areas of future work. The cluster 447	

tracking provided in this study can be combined with other event based datasets, such as 448	

the TRMM precipitation feature (TRMM-PF) dataset developed by Liu et al. [2008]. 449	

TRMM-PF has been extensively used to study the scale and intensity of rainfall events 450	

and can infer life cycle stage from the vertical profiles obtained from the precipitation 451	

radar. By combing TRMM-PF with our IR-based cloud tracks, rain features can be 452	

studied in context of their entire life cycle and trajectory, overcoming the sampling limits 453	

of polar orbiting satellites, to further our understanding of precipitating cloud systems. 454	

ACKNOWLEDGEMENTS 455	

This research was supported by the NASA Earth System Data Records Uncertainty 456	

Analysis Program and NASA’s Precipitation Measurement Missions (PMM) program. 457	

Computing resources were provided by the NASA Center for Climate Simulation. The 458	

data used in this study are available online through the Goddard Earth Sciences Data and 459	

Information Services Center’s Mirador Search tool: http://mirador.gsfc.nasa.gov. Upon 460	

publication of the manuscript, we plan to distribute cloud cluster tracks created in this 461	

study. 462	



Esmaili	et	al.,	2016	 22	

REFERENCES 463	

Adler, R. F. et al. (2003), The Version-2 Global Precipitation Climatology Project 464	

(GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeor., 4(6), 465	

1147–1167, doi:10.1175/1525-7541. 466	

Boer, E. R., and V. Ramanathan (1997), Lagrangian approach for deriving cloud 467	

characteristics from satellite observations and its implications to cloud 468	

parameterization, J. Geophys. Res., 102(D17), 21383–21399, doi:10.1029/97JD00930. 469	

Bengtsson, L., K. I. Hodges, and E. Roeckner (2006), Storm tracks and climate change, J. 470	

Climate, 19(15), 3518–3543. 471	

Bengtsson, L., K. I. Hodges, and N. Keenlyside (2009), Will Extratropical Storms 472	

Intensify in a Warmer Climate?, J. Climate, 22(9), 2276–2301, 473	

doi:10.1175/2008JCLI2678.1. 474	

Blamey, R. C., and C. J. C. Reason (2012), Mesoscale Convective Complexes over 475	

Southern Africa, J. Climate, 25(2), 753–766, doi:10.1175/JCLI-D-10-05013.1. 476	

Carvalho, L. M. V., and C. Jones (2001), A Satellite Method to Identify Structural 477	

Properties of Mesoscale Convective Systems Based on the Maximum Spatial 478	

Correlation Tracking Technique (MASCOTTE), Journal of Appl. Meteorol, 40(10), 479	

1683–1701, doi:10.1175/1520-0450. 480	



Esmaili	et	al.,	2016	 23	

Chen, S. S., R. A. Houze Jr., and B.E. Mapes (1996), Multiscale variability of deep 481	

convection in relation to large-scale circulation in TOGA COARE, Journal of the 482	

Atmospheric Sciences, 53(10), 1380. 483	

Chen, S. S., and R. A. Houze (1997), Diurnal variation and life-cycle of deep convective 484	

systems over the tropical pacific warm pool, Q.J.R. Meteorol. Soc., 123(538), 357–485	

388, doi:10.1002/qj.49712353806. 486	

Ebert, E. E., J. E. Janowiak, and C. Kidd (2007), Comparison of Near-Real-Time 487	

Precipitation Estimates from Satellite Observations and Numerical Models, Bull. 488	

Amer. Meteor. Soc., 88(1), 47–64, doi:10.1175/BAMS-88-1-47. 489	

Fiolleau, T., and R. Roca (2013), An Algorithm for the Detection and Tracking of 490	

Tropical Mesoscale Convective Systems Using Infrared Images From Geostationary 491	

Satellite,  IEEE T. Geosci. Remot, 51(7), 4302–4315, 492	

doi:10.1109/TGRS.2012.2227762. 493	

Futyan, J. M., and A. D. Del Genio (2007), Deep Convective System Evolution over 494	

Africa and the Tropical Atlantic, J. Climate, 20(20), 5041–5060, 495	

doi:10.1175/JCLI4297.1. 496	

Hennon, C. C., C. N. Helms, K. R. Knapp, and A. R. Bowen (2011), An Objective 497	

Algorithm for Detecting and Tracking Tropical Cloud Clusters: Implications for 498	

Tropical Cyclogenesis Prediction, J. Atmos. Ocean. Tech., 28(8), 1007–1018, 499	

doi:10.1175/2010JTECHA1522.1. 500	



Esmaili	et	al.,	2016	 24	

Hoskins, B. J., and K. I. Hodges (2002), New perspectives on the Northern Hemisphere 501	

winter storm tracks, Atmos. Sci, 59(6), 1041–1061. 502	

Houze, R. A., Jr., K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik (2015), The 503	

variable nature of convection in the tropics and subtropics: A legacy of 16 years of 504	

the Tropical Rainfall Measuring Mission (TRMM) satellite. Rev. Geophys., 53, 505	

doi:10.1002/2015RG000488. 506	

Hou, A. Y., R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. 507	

Oki, K. Nakamura, and T. Iguchi (2013), The Global Precipitation Measurement 508	

Mission, Bull. Amer. Meteor. Soc., 95(5), 701–722, doi:10.1175/BAMS-D-13-509	

00164.1. 510	

Hsu, K., H. V. Gupta, X. Gao, and S. Sorooshian (1999), Estimation of physical variables 511	

from multichannel remotely sensed imagery using a neural network: Application to 512	

rainfall estimation, Water Resour. Res., 35(5), 1605–1618, 513	

doi:10.1029/1999WR900032. 514	

Huffman, G.J., D. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, and P. Xie (2013). NASA 515	

Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for 516	

GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.1, NASA, 29 pp. 517	

[http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.1.pdf.] 518	

Huffman, G. J., D. T. Bolvin, E. J. Nelkin, D. B. Wolff, R. F. Adler, G. Gu, Y. Hong, K. 519	

P. Bowman, and E. F. Stocker (2007), The TRMM Multisatellite Precipitation 520	



Esmaili	et	al.,	2016	 25	

Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates 521	

at fine scales, Journal of Hydrometeorology, 8(1), 38–55. 522	

Janowiak, J. E., R. J. Joyce, and Y. Yarosh (2001), A Real–Time Global Half–Hourly 523	

Pixel–Resolution Infrared Dataset and Its Applications, Bull. Amer. Meteor. Soc., 524	

82(2), 205–217, doi:10.1175/1520-0477. 525	

Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie (2004), CMORPH: A method that 526	

produces global precipitation estimates from passive microwave and infrared data at 527	

high spatial and temporal resolution, Journal of Hydrometeorology, 5(3), 487–503. 528	

Kikuchi, K., and B. Wang (2008), Diurnal Precipitation Regimes in the Global Tropics*, 529	

Journal of Climate, 21(11), 2680–2696, doi:10.1175/2007JCLI2051.1. 530	

Kubota, T., and S. Shige (2007), Global Precipitation Map Using Satellite-Borne 531	

Microwave Radiometers by the GSMaP Project: Production and Validation, IEEE 532	

Trans. Geosci. Remote Sens., 45(7), 2259 – 2275, doi:10.1109/TGRS.2007.895337. 533	

Kummerow, C. et al. (2000), The Status of the Tropical Rainfall Measuring Mission 534	

(TRMM) after Two Years in Orbit, J. Appl. Meteor., 39(12), 1965–1982, 535	

doi:10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2. 536	

Kunkel, K. E., T. R. Karl, D. R. Easterling, K. Redmond, J. Young, X. Yin, and P. 537	

Hennon (2013), Probable maximum precipitation and climate change, Geophys. Res. 538	

Lett., 40(7), 1402–1408, doi:10.1002/grl.50334. 539	



Esmaili	et	al.,	2016	 26	

Laing, A. G., and J. Michael Fritsch (1997), The global population of mesoscale 540	

convective complexes, Q.J.R. Meteorol. Soc., 123(538), 389–405, 541	

doi:10.1002/qj.49712353807. 542	

Lakshmanan, V., K. Hondl, and R. Rabin (2009), An Efficient, General-Purpose 543	

Technique for Identifying Storm Cells in Geospatial Images, J. Atmos. Ocean. 544	

Technol., 26(3), 523–537, doi:10.1175/2008JTECHA1153.1. 545	

Li, J., K. Hsu, A. AghaKouchak, and S. Sorooshian (2015), An object-based approach for 546	

verification of precipitation estimation, International Journal of Remote Sensing, 547	

36(2), 513–529, doi:10.1080/01431161.2014.999170. 548	

Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood (2008), A Cloud and 549	

Precipitation Feature Database from Nine Years of TRMM Observations, J. Appl. 550	

Meteor. Climatol., 47(10), 2712–2728, doi:10.1175/2008JAMC1890.1. 551	

Liu, C., and E. J. Zipser (2009), “Warm Rain” in the Tropics: Seasonal and Regional 552	

Distributions Based on 9 yr of TRMM Data, J. Climate, 22(3), 767–779, 553	

doi:10.1175/2008JCLI2641.1. 554	

Liu, C., and E. J. Zipser (2015), The global distribution of largest, deepest, and most 555	

intense precipitation systems: largest, deepest and strongest storms, Geophys. Res. 556	

Lett., 42(9), doi:10.1002/2015GL063776. 557	

Lovejoy, S., and D. Schertzer (2006), Multifractals, cloud radiances and rain, J. Hydrol., 558	

322(1-4), 59–88, doi:10.1016/j.jhydro1.2005.02.042. 559	



Esmaili	et	al.,	2016	 27	

Machado, L. A. T., M. Desbois, and J.-P. Duvel (1992), Structural Characteristics of 560	

Deep Convective Systems over Tropical Africa and the Atlantic Ocean, Monthly 561	

Weather Review, 120(3), 392–406, doi:10.1175/1520-562	

0493(1992)120<0392:SCODCS>2.0.CO;2. 563	

Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker (1998), Life cycle 564	

variations of mesoscale convective systems over the Americas, Mon. Weather Rev., 565	

126(6), 1630–1654. 566	

Machado, L. A. T., and H. Laurent (2004), The convective system area expansion over 567	

Amazonia and its relationships with convective system life duration and high-level 568	

wind divergence, Monthly weather review, 132(3), 714–725. 569	

Maddox, R. A. (1980), Meoscale Convective Complexes, Bull. Amer. Meteor. Soc., 570	

61(11), 1374–1387, doi:10.1175/1520-0477. 571	

Mapes, B. E., and R. A. Houze (1993), Cloud Clusters and Superclusters over the 572	

Oceanic Warm Pool, Mon. Weather Rev., 121(5), 1398–1416, doi:10.1175/1520-0493. 573	

Morel, C., and S. Senesi (2002), A climatology of mesoscale convective systems over 574	

Europe using satellite infrared imagery. II: Characteristics of European mesoscale 575	

convective systems, Q.J.R. Meteorol. Soc., 128(584), 1973–1995, 576	

doi:10.1256/003590002320603494. 577	

Neu, U. et al. (2013), IMILAST: A Community Effort to Intercompare Extratropical 578	

Cyclone Detection and Tracking Algorithms, Bull. Amer. Meteor. Soc., 94(4), 529–579	

547, doi:10.1175/BAMS-D-11-00154.1. 580	



Esmaili	et	al.,	2016	 28	

Parzen, E. (1962), On Estimation of a Probability Density Function and Mode, Ann. Math. 581	

Statist., 33(3), 1065–1076, doi:10.1214/aoms/1177704472. 582	

Rosenblatt, M. (1956), Remarks on Some Nonparametric Estimates of a Density Function, 583	

Ann. Math. Statist., 27(3), 832–837, doi:10.1214/aoms/1177728190. 584	

Sinclair, M. R. (1994), An Objective Cyclone Climatology for the Southern Hemisphere, 585	

Mon. Wea. Rev., 122(10), 2239–2256, doi:10.1175/1520-0493. 586	

Stephens, G. L., T. L’Ecuyer, R. Forbes, A. Gettlemen, J.-C. Golaz, A. Bodas-Salcedo, K. 587	

Suzuki, P. Gabriel, and J. Haynes (2010), Dreary state of precipitation in global 588	

models, J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532. 589	

Tadesse, A., and E. N. Anagnostou (2009), The Effect of Storm Life Cycle on Satellite 590	

Rainfall Estimation Error, J. Atmos. Ocean., 26(4), 769–777, 591	

doi:10.1175/2008JTECHA1129.1. 592	

Teng, H.-F., C.-S. Lee, and H.-H. Hsu (2014), Influence of ENSO on formation of 593	

tropical cloud clusters and their development into tropical cyclones in the western 594	

North Pacific: Influence of ENSO on TCC Formation, Geophysical Research Letters, 595	

41(24), 9120–9126, doi:10.1002/2014GL061823. 596	

Thorncroft, C., and K. Hodges (2001), African Easterly Wave Variability and Its 597	

Relationship to Atlantic Tropical Cyclone Activity, J. Climate, 14(6), 1166–1179, 598	

doi:10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2. 599	



Esmaili	et	al.,	2016	 29	

Velasco, I., and J. Fritsch (1987), Mesoscale Convective Complexes in the America, J. 600	

Geophys. Res.-Atmos., 92(D8), 9591–9613, doi:10.1029/JD092iD08p09591. 601	

Vila, D. A., L. A. T. Machado, H. Laurent, and I. Velasco (2008), Forecast and Tracking 602	

the Evolution of Cloud Clusters (ForTraCC) using satellite infrared imagery: 603	

Methodology and validation, Wea. Forecasting, 23(2), 233–245. 604	

Westra, S., H. J. Fowler, J. P. Evans, L. V. Alexander, P. Berg, F. Johnson, E. J. Kendon, 605	

G. Lenderink, and N. M. Roberts (2014), Future changes to the intensity and 606	

frequency of short-duration extreme rainfall, Rev. Geophys., 52(3), 2014RG000464, 607	

doi:10.1002/2014RG000464. 608	

Wilks, D. S. (2011), Statistical methods in the atmospheric sciences, International 609	

geophysics series v. 100, 3rd ed., Elsevier/Academic Press, Amsterdam ; Boston. 610	

Williams, M., and R. A. Houze (1987), Satellite-Observed Characteristics of Winter 611	

Monsoon Cloud Clusters, Mon. Weather Rev., 115(2), 505–519, doi:10.1175/1520-612	

0493. 613	

Xie, P., and A.-Y. Xiong (2011), A conceptual model for constructing high-resolution 614	

gauge-satellite merged precipitation analyses, J. Geophys. Res., 116(D21), D21106, 615	

doi:10.1029/2011JD016118. 616	

Zahraei, A., K. Hsu, S. Sorooshian, J. J. Gourley, Y. Hong, and A. Behrangi (2013), 617	

Short-term quantitative precipitation forecasting using an object-based approach, J. 618	

Hydrol., 483, 1–15, doi:10.1016/j.jhydrol.2012.09.052. 619	



Esmaili	et	al.,	2016	 30	

Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty (2006), Where are the 620	

most intense thunderstorms on earth?, Bull. Amer. Meteorol. Soc., 87(8), 1057, 621	

doi:10.1175/BAMS-87-8-1057. 622	

Zolina, O., and S. K. Gulev (2002), Improving the Accuracy of Mapping Cyclone 623	

Numbers and Frequencies, Mon. Wea. Rev., 130(3), 748–759, doi:10.1175/1520-0493. 624	

 625	



1	

Figure 1. (a) Globally merged map of IR brightness temperature from NCEP/CPC Cloud 
brightness temperature dataset for 23:00 GMT June 28, 2012. (b) Cloud clusters captured 
by ForTraCC after applying temperature and size thresholds. Shading represents cloud 
brightness temperature.
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Figure 2. Schematic of area-overlap handling of continuous systems (c), merging 
systems (m), and splitting systems (s). The image was taken of thunderstorms 
developing over the American Midwest beginning at 3:00pm EST on June 30, 
2012.  Yellow represents the initial time, orange 1.5 hours later, and red 3.0 hours 
after initial detection. 

Figure 3. Cloud cluster tracks from Dec 1-4, 2001 produced from using the 
ForTrACC algorithm. A few days of tracking yield a large number of clusters and 
their movement begins to trace out large-scale atmospheric patterns.  
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Figure 4. Climatology of cloud cluster trajectories in (a) DJF and (b) JJA, 2002-2012 
with 6-9 hour lifetimes binned by 2° x 2°. Lines show average displacement of all cloud 
clusters that initiated at the same point over the 11-year period studied. Coloring indicates 
net zonal movement of clusters. Grid boxes with fewer than five initiations were not 
displayed.  
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Figure 5. (a) Number of detected events globally by lifetime and size for the entire 
record. (b) The kernel density estimate of cloud clusters at their maximum areal extent 
for each lifetime group over the entire study period (DJF and JJA, 2002-2012). 

 
 
 
  

b)	

a)	



	

	 5	

  

 

Figure 6. Mean seasonal frequency of clusters for (a) DJF and (b) JJA at their 
maximum areal extent. The figure shows the average seasonal count of events over 
the  study period, binned by 2° x 2° latitude-longitude. Warmer colors represent 
higher counts while cooler colors represent fewer observations. White grid boxes 
have ten or fewer cloud clusters across the 11 year period. 
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Figure 7. The composite of the 11-year DJF mean annual frequency of cloud cluster 
overpasses for El Niño and La Niña, binned by 2° x 2° latitude-longitude, at their 
maximum areal extent. Warm or cool event years were selected based on the 
NINO3.4 sea surface temperature anomaly index. White grid boxes have three or 
fewer cloud clusters. 
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Figure 8. The global average life cycle evolution for new cloud clusters with varying life 
times. Each curve represents the average properties of millions of clusters grouped by life 
span. The shortest lines are short-lived events longer lines are long-lived. Curves show 
how the size changes as a function of the clusters’ lifetime. Dashed curve is a regression 
fitted to the maximum of each curve. Seasons are defined by the  ±25° latitude line.
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Figure 9. Same as Figure 8, but showing how the average brightness temperature 
changes as a function of time and lifetime. 
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Figure 10. Total instantaneous rainfall contribution as a function of rain rate captured by 
clusters in the (a, b) Northern Hemisphere, (c, d) tropics, and (e, f) Southern Hemisphere 
in June and December 2014. The distribution is based on coincident cloud clusters and 
passive microwave-based rainfall estimates from the IMERG dataset. 
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Figure 11. Diurnal variation in local solar time (LST) cloud cluster initiation for (a) DJF 
and (b) JJA, binned by 2° x 2° latitude-longitude. Each box shows the timing of 
maximum occurrence of cluster formation for the 11-year record. Only clusters with a 
lifetime greater than two hours are included. 



	

	 11	

 

 

Figure 12. The kernel density of local solar time of the life cycle stage in two regions, 
0°-30°N and 60°-90°E (South Asia) and 0-40°N, 50°W-20°E (West Africa). 

 

Figure 13. The kernel density of local solar time of initiation in three-hourly lifetime bins 
for two regions, 0°-30°N and 60°-90°E (South Asia) and 0-40°N, 50°W-20°E (West 
Africa). 
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